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A methodof evaluatingimage-recoveryalgorithmsispresentedthatisbasedonthenumericalcomputationofhow
wellaspecifiedvisualtaskcanbeperformedonthebasisof thereconstructedimages.A MonteCarlotechniqueis
usedtosimulatethecompleteimagingprocessincludinggenerationof scenesappropriatetothedesiredapplication,
subsequentdatataking,imagerecovery,andperformanceof thestatedtaskbasedonthefinalimage. Thepseudo-
random-simulationprocesspermitioneto assesstheresponseof animage-recoveryalgorithmto manydifferent
realizationsof the sametypeof scene. The usefulnessof thismethodis demonstratedthrougha atudyof the
algebraicreconstructiontechnique(ART),atomographicreconstructionalgorithmthatreconstructsimagesfrom
theirprojections. The taskchosenfor thisstudyis the detectionof disksof knownsizeandposition, Task
performanceis ratedon the basisof thedetectabilityindexderivedfromtheareaunderthereceiveroperating
characteristiccurve. In the imagingsituationsexplored,the useof the nonnegativityconstraintin the ART
dramaticallyincreasesthedetectabilityof objectsinsomeinstances,particularlywhenthedataconsistofalimited
numberof noiselessprojections.Conversely,thenonnegativityconstraintdoesnotimprovedetectabilitywhenthe
dataarecompletebutnoisy.

INTRODUCTION

In every indirect imaging application it is necessary to
chooaean image-recovery algorithmto obtain a final image.
This choice becomes critically important whenthe available
data are limited and/or are noisy. Several classes of mea-
sureson which to base image-recoveryalgorithmshavebeen
employed in the past.l There are those based on how cloae
the reconstructed image is to the original one, such as the
conventional measure of minimum rms difference between
the reconstruction and the original image. Experience
teaches us that this does not always seem to be correlated
with the usefulness of images and so does not help one to
choose an algorithm. There are measures baaed on how
closely the estimated reconstruction reproduces the input
data. The moat popular of these measures,based on least-
squaresresidud (or minimum chi aquared), is known often
to be ill conditioned or, even worse, ill posed.l To makethe
problem more tractable, it is often proposed to constrainthe
least-squares objective in aome way. Further, there are
meaauresthat combine the foregoingmeasures,suchasmax-
imum a posterior reconstruction, which balancesthe agree-
ment with the data againatthe relationship of the recon-
struction to the known ensembleprobability distributions.z

The fundamental tenet adopted in thia paper ia that the
overall purpose of the imaging procedure ia to provide cer-
tain specific information about the object or scene under
investigation. Consequently, in the approach to algorithm
evaluation presented here, an algorithm is to be judged on
the basis of how well one can perform atated visual tasks,
usingthe reconstructed images.

The method presented can help one to answerthe peren-
nial question asked of topographers: How many projec-
tions areneeded? The proper responaeto sucha questionia
the following: needed to do what? The answerdepends on
the type of scene that one iadealingwith, the magnitudeof

the noise in the data, and the kind of information that one
desires from the reconstruction, to wit, the visualtask to be
performed.

For linear imaging aystemsthe effects of image noise on
task performance can be predicted for a variety of taaks,as,
for example, treated in Ref. 3. The maakingeffects ofmea-
surement noise are truly random in nature. The random-
noise proceas makes each aet of measurements different,
even when the scene being imaged does not change. Con-
trarily,the effects of artifactson taskperformancearenot so
easily predicted. Some kinds of artifact appear as fixed
patterna and do not often behave like stationary noise.
However, those created by an insufficient number of mea-
aurementacan manifestthemselvesas seeminglyunpredict-
able irregularitiesthat look like noise, but, in a strict sense,
they are not. These patterns are determined by the scene
beingimaged. Therefore itia necessaryto dealwithrealiatic
acenesto teathowwellan algorithmdiapenseswithartifacts.
For example,the objects in the scene aretypically randomly
placed relative to the discretely eampled measurement aa
well as to the reconstruction grid. Both of these position-
ing can affect the reconstruction. Thuaa ainglerealization
of a aimple scene is completely inadequate for judging a
reconstruction algorithm. It is necessaryto obtain a statis-
tically meaningfulaverageof the reaponaeof an algorithmto
many realizationsof the ensemble of scenes with which it
must cope. It is unclearwhethersuch a global approach to
task performance ia amenable to theoretical treatment.
The implied averagingover diacretesamplingsis difficult to
handle analytically although some results can be derived.4
It is not properly taken into account by the assumptionof an
effective modulation transfer function to characterizesam-
pling, aa is ao often employed. Furthermore, it would be
difficult to deal with nonlinear reconstruction or task per-
formance algorithms. To overcome these deficiencies, the
proposed method is based on computer simulationof acenes

0740-3232/90/071294-11$02.00 @ 1990OpticalSocietyof America



K.M.Hanson

appropriate to the desired application, the subsequentdata
taking, and the analysisof the data. A Monte Carlo tech-
nique, one employing pseudorandom numbers to generate
iti results, is used in this simulationprocess because it can
readily provide the above-noted variations within the en-
semble. Furthermore, any new source of uncertainty can
easilybe incorporated into the simulationby simply select-
ing the appropriate variable by means of a pseudorandom
number.

METHOD OF EVALUATING TASK
PERFORMANCE

The proposed method of evaluating image-recovery algo-
rithms employs a Monte Carlo technique6to simulate the
entire imaging process from the beginningto the final task
performance. To begin, one randomly generatesrepresen-
tative scenes and the corresponding sets of measurements.
The specified tasks are then performed, using the recon-
structed scenes. Finally, the accuracy of the task perform-
ance is evaluated. The advantage of this numerical ap-
proach is that it readilyhandlescomplex imagingsituations,
nonstationaryimagingcharacteristics,and nonlinearrecon-
struction algorithms. Its major disadvmtage is that it pro-
vides an evaluationthat is valid only for the specific imaging
situationinvestigation.

Figure 1 showsthe basic steps of the proposed method of
evaluatingthe task performance based on an ensemble of
images. The proposed method proceeds as follows. First,
the whole problem must be completely specified:

(a) Define the class of scenes to be imaged, including as
much complexity as existi in the intended application.
Variationsin scenefrom one realizationto anothershouldbe
fully specified.

(b) Define the geometry of the measurements. The defi-
ciencies in the memurements such as blur, uncertaintiesin
the geometry, and uncertainties in the measurements
(noise) should be specified. Variations of these uncertain-
tieswith position, as wellas intercorrelationsbetweenthem,
could be included.

(c) Define clearly the task that is to be performed. The
task might be simple detection of a known object againsta
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Fig.1. Diagramof theMonteCarloprocedureemployedto eval-
uatenumericallytheperformanceof avisualtask.
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known background, for example. Alternatively,it could be
discrimination between two types of object, or something
more complex, such asmultiple discriminationor parameter
estimation. The fundamental assumptions in effect must
be explicitly stated.

(d) Define the method of task performance. This should
be consistentwiththe intended application. If the taskisto
be performed by computer, then the intended analysisalgo-
rithm may be used. If the task is to be performed by a
humanobserver, some approximation to the way in which a
humaninterpretsan imageshould be used. Alternatively,a
maximum-likelihoodalgorithm (ideal observer) may be em-
ployed to define the best possible performance (under the
prevailing assumptions made about the extent of auxillary
information).

The simulationprocedure is then performed by doing the
following:

(e) Create a representativescene and the corresponding
measurement dati by means of a Monte Carlo simulation
technique. All variationsin scenecontent anduncertainties
in the measurementsare included by means of pseudoran-
dom selection of the uncertainand variableparameters.

(f) Reconstruct the scene with the algorithmbeing test-
ed.

(g) Perform the specified task, using the reconstructed
image.

(h) Repeat steps (e)-(g) a sufficient number Oftimes to
obtain the necessary statistics on the accuracy of the task
performance.

Finally,determine how well the task has been performed,
on the average:

(i) Evaluatethe task performance. For binary discrimi-
nation tasks (of the yes or no variety), a receiver operating
characteristic (ROC) curve7maybe generated. The proper
measureof how well the task is performed should be based
on what is important in the intended application. In a
precisetreatment,one mightuseBayes’smethod to estimate
the tital risk, incorporatingthe relativecosts of makingfalse
or true conclusions.7’8 For parameterestimationtasks, the
standardmeasureof rms error might be appropriate.

ALGEBRAIC RECONSTRUCTION TECHNIQUE

The algebraic reconstruction technique (ART) is an itera-
tive algorithm that reconstructs a function from its projec-
tions. It has proved to be a successful tomographic recon-
struction algorithm, particularly when there is a limited
number of projections available. Assumethat N individual
projection measurementsaremade of the unknownfunction
f, which is considered a vector. The ith measurementis
writtenas

where Hiis the corresponding row of the measurementma-
trix. It should be realized that the originally suggested
choices of O and 1 for the elements of H is unwise.lo The
precise weights used are not intrinsic to the algorithm. In
modern practice the elements of H are calculated as line or
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strip integrals of the reconstruction by interpolating be-
tween the discretely sampled grid points.11,]2

The ART algorithmproceeds as follows. An initialguess
is made, for example, f“ = O. Then the estimateis updated
by iteratingon the individualmeasurementstaken in turn:

‘( )fk+l=fk+~k~T gi-Hif’

Hi~Hi ‘
(2)

where fk is the kth estimate of the image vector f, i = k
mod(~ + 1,and Xkis a relaxationfactor for the kth update.
In constrainedART algorithmsa nonnegativityconstraintis
enforced by setting any component of fh+] to zero that has
been made negativeby the above updating procedure. We
usethe index K to indicate the iterationnumber [K = int(k/
~], which in the standardnomenclaturecorresponds to one
pass through all N measurements. We express the relax-
ation factor as

k~ = Ao(rA)~-l. (3)

There is little guidance on the choice of the relaxation
factor in the literature. A value of unity is often suggested
and used. In the absenceof constraints,sucha choice forces
the reconstruction to agreewith the last measurementused
for updating. It is knownl:]that if a unique solution to the
measurement equations exists, the ART algorithm con-
verges to it in the limit of an infinite number of iterations,
provided that 2> A >0. If many solutions exist, the ART
algorithm converges to the one with minimum norm. Cen-
sor et al.14 have shown that the unconstrained ART algo-
rithm ultimately converges to a minimum-norm least-
squaressolution, which is desirable for inconsistent (noisy)
data, if the relaxationfactor approaches zero slowlyenough.
In this researchwe will investigatethe ART algorithm,em-
ploying 10iterations. Although 10iterationsarenot enough
to ensurecomplete convergenceto the solution,this choice is

in the rangeof the number of iterationsoften employedwith
the ART algorithm.g We will use 1.0 and 0.8 as nominal
valuesfor A.and rl for problems involvinga limited number
of views or projection sets and 0.2 and 0.8 for problems
involvingmany (-100) views. These choices are fairly rep-
resentativefor unconstrainedART reconstructionsand will
suffice for the presentdemonstrationof the proposed meth-
od of evaluation. It ispossibleto usethisevaluationmethod
to find the best choice of relaxationparametersfor a specific
problem.15

APPLICATION TO THE EVALUATION OF THE
NONNEGATIVITY CONSTRAINT

The usefulnessof the nonnegativityconstraint in the ART
algorithmwill now be explored to demonstratehow the pro-
posed method can be used. It should be noted that such a
constraint makes the response of the reconstruction algo-
rithm nonlinear. As such, the task performance in the pres-
ence of either noise or artifacts is not amenable to linear
analysis. Byway of introduction to the choice of properties
for the scenesto be studiedhere,Fig. 2 showshowthe simple
streakartifacts that arisein the tomographic reconstruction
of a single disk from a limited number of projections super-
impose to form a complex background patternwhenseveral
objects are present. In one sense the seemingly random
fluctuations in the background are not truly noise because
they would be exactly reproduced if another set of projec-
tions wasobtained withthe objects in the sameplace. How-
ever, the pattern changes with the positions of the objects.
So, in anothersense,the artifactsarestochastic if the objects
are randomly placed in the scene. This simple observation
points to the need to consider many realizationsof the kind
of scene in order to adequatelyevaluatetaskperformancein
the presence of artifacts.

For the present example,each scene is assumedto consist

Fig. 2. Reconstructionsof one (left) and three (right)dots from 12 noiselessparallelprojectionscovering180deg obtainedwiththe
unconstrainedART algorithm. The incoherentsumof simplestreakartifactsfrom threedots producesnoise-likefluctuationsin the
background.
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of a number of nonoverlappingdisks placed on a zero back-
ground. To maximize the problems caused by artifacts in
this study, we assume that each scene contains 10 high-
contrast disks of amplitude 1.0 and 10 low-contrast disks
with amplitude 0.1. The task to be performed is the detec-
tion of the low-contrast disks. In limited data-taking cir-
cumstances, the high-contrast disks produce serious arti-
facts in the reconstructions,makingit difficult to detect the
low-contrast ones. The disks are randomly placed within
the circle of reconstruction, which has a diameter of 128

pixels in the reconstructed image. The diameter of each
disk is 8 pixels. To guaranteethat the disks do not touch
one another in the reconstruction, a 3-pixel-wide buffer re-
gion surroundseach disk. The first of the series of images
generatedfor these tests is shownin Fig. 3. In this comput-
ed tomographic problem, the measurementsare assumedto
consist of a specified number of parallel projections, each
containing 128 samples. The above choice for the kind of
sceneto be studiedprovides a situationin whichthe nonneg-
ativity constraint is likely to have a substantialeffect. In
some of the test cases described below, random noise is
added to the projection measurements. For these,a Gauss-
ian-distributedrandom number generatorwith zero meanis
used. This means that negative values for the projections
are possible, even though the object itself is nonnegative.
While this may seem absurd to theoreticians, it is not at
variancewith many experimentalsituations. For example,
in transmission tomography in which the projections are
measuredthroughthe attenuationof x rays,the path length
is derived from the ratio of a measured x-ray intensity to
that expected for no object. The measuredintensityvalues
will vary, at least because of counting statistics, about less
than the expected intensity,yielding path lengthsthat fluc-
tuate about and below zero.

The resultsof reconstructingFig. 3 from 12noiselessviews
spanning 180 deg by using 10 iterations of the ART algo-
rithm are shown in Fig. 4. The seeminglyrandom fluctua-
tions in the background are artifacts produced by the limit-
ed number of projections. At first sight, it appearsthat the
nonnegativity constraint improves the reconstruction con-
siderably by reducing the confusion caused by the fluctua-
tions in the background. However,someof the low-contrast
disks have not been reproduced. Also, there remainmany
fluctuations in the background that may mislead one to
suspect the presence of disks where none exist in reality.
Thus, on the basis of this single reconstructed scene, one

Fig.4. Reconstructionsof Fig,3 from12noiselessparallelprojectionssubtending180degobtainedwith10iterationsof theART algorithm
with(right)andwithout(left)thenonnegativityconstraint.Theseimagesaredisplayedwithhighcontrastto revealthelow-contrastdisksof
interest.
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cannot say with certainty whether the nonnegativity con-
straint improves the detection of the low-contrast disks.
The question is basically a statistical one. A statistically
significant comparison between reconstructions with and
without the constraint must be made to assessits value.

We now present some basic elements of signal-detection
theory~to facilitate the analysisof the binarydiscrimination
task, namely, is the disk present or not? To make the
detection task as simple as possible, it will be assumedthat
the position of a possible disk and the background is com-
pletely known beforehand. The first step is to define a
scalar decision variable, which is to be used to make the
decision. The likelihood ratio betweenthe two alternatives
yields an optimum decision variable. When the image is
corrupted by additive uncorrelatedGaussiannoise, the opti-
mum decision variable is the inner product between the
expected signal shape and the actual data, which is, of
course, identical to usinga matched filter.~ Then the detec-
tion task is performed by statingthat a disk is present when
the valueof the decision variableis above a chosenthreshold
value. Consider the frequency distribution of the decision
variablesobtained at locations at which the objects of ir~ter-
est are known to be present. The probability that the pres-
ence of a disk is correctly detected, called the true-positive
probability, is estimated by the area that is under this fre-
quencydistribution and abovethe threshold. Theprobabil-
ity of falsely stating that a disk is present, the false-positive
probability, is the areathat isabove the thresholdand under
the corresponding frequency distribution for locations at
whichno object exists. As the threshold is lowered,both the
true-positive rate and the false-positive rate increase. The
resulting variation sweeps out the ROC curve,~which is a
plot of the true-positive probability versusthe false-positive
probability. The ROC curve completely summarizesbinary
discrimination task performance. According to Bayes, an

optimum value of the threshold value, one that minimizes
the overall risk or cost, can be chosen on the basis of the
relative costs associated with correctly and incorrectly de-
tecting disks. When one is dealing with human observers,
these frequency distributions are not explicitly observable;
the choice of the threshold is implicitly made by the observ-
er. The access to the frequency distributions afforded by
the present computational approach is advantageous be-
cause these distributions represent the fundamental data.
The full ROC curve is easily generated once the frequency
distributions are calculated.

To perform the stated task of detection in the present
study, we assumed that the average of the reconstruction
over the area of the disk is an appropriate decision variable.
This average is a good approximation to the optimal
matched filter. However, it ignores the blurring effects of
the finite resolution of the discretely sampled reconstruc-
tion. It also does not take into account the known correla-
tion in the noise in computed tomographic reconstructionslG
that havebeen derived from projections containinguncorre-
lated noise. Nor does it take into account the effects of the
nonnegativityconstraint on the characteristicsof the noise.
After reconstruction, the average is calculated over each
region in which a low-contrast disk is known to exist. The
result of doing this for the reconstructions of 10 different
scenes, each containing 10 low-contrast disks and approxi-
mately 30 separate disk regions that are taken from the

background, is displayed as a frequency graph in this deci-
sion variable~ in Fig. 5(a). The graph for the averagesover
each region for which no disk exists is plotted as well.

Figure6 showsthe ROC curvegenerateddirectly from the
frequency graphs in Fig. 5. Comparison betweenthe ROC
curves produced by the unconstrainedART algorithm and
by the constrained ART algorithmshowsthat the nonnega-
tivity constraint has dramatically enhanced the perform-
ance of this detection task. We will base our summary
measure of the detectability on the area under the ROC
curve A, which is known to be the same as the fraction of
correct scores that would be obtained in a two-alternative
forced-choice experiment.17 As is characteristicof all sum-
mary measures,however, it ignores the details of the shape
of the ROC curve, which might be important if different
costs were involved in making false-positive responsesthan
in making false-negativeones. The area is estimated here
by applyingthe trapezoidalruleto the ROC curvegenerated
with medium to finely binned histograms. The areasunder
the ROC curves in Fig. 6 are 0.738with no constraint com-
pared with 0.930 witli the constraint. The area under the
ROC curve may be expressed in terms of an effective index
for detectability d*:
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d4 = 2 erf c-1[2(1 – A)], (4)

where erf C–l is the inverse of the complement of the error
function erf c(x) = 1 – (2/,~)J~ exp(–t2)dt. ]8’lg In Ref. 19
this index is designatedby z(A) and the areaunder the ROC
curve by P(A). For Fig. 6 a valuefor d~ of 0.901is obtained
for the reconstructions without the constraint and 2.092
with the constraint. Thus the use of the nonnegativitycon-
straint has increased the detectability by 132~o,in this case
of a limited number of views. The nonnegativityconstraint
decidedly improves this measureof detectability.

An alternative index of detectability can be derived di-
rectly from the frequency distributions. For one to be able
to distinguish between the ensemble of low-contrast disks
and the background, it is clearly desirable for these two
frequency distributions to be separatedas much as possible.
The degree of separation between the two distributions is
often characterizedby the detectability index d’ (called da in
Ref. 19), given by

(5)

where ~1and al are the mean and the rms deviation of the
frequency distribution, respectively, when the object is
present and those with subscript Oare the valueswhen the
object is not present. This index is sometimes called the
detection signal-to-noise ratio. Equation (5) is normalized
to be the same as dAfor Gaussian-shapedfrequency distri-
butions. For the frequency graphs that are shown in Fig.
5(a) corresponding to the unconstrained reconstructions, d’
is 0.871. The corresponding frequency graphs for con-
strained reconstructions are presented in Fig. 5(b). It is
seen that, owing to the nonnegativity constraint, the fre-
quency graph for the background regions piles up against
zero. Both frequency graphsarenarrowerthanthose for the
unconstrained reconstructions. In fact, the rms widths of
the two frequency graphs are quite different. The detect-
ability index d’ for the constrained reconstructions is 2.054.

Careehouldbe exercisedin usingthismeasureof detectabil-
ity,lgas it is equivalentto dAonly when the two underlying
frequency distributions are Gaussian. So if the stated task
is binary discrimination between the disks and the back-
ground and the area under the ROC curve is deemed to be
the appropriate performance index, then d’ should not be
employed in place of dAwithoutverification of the Gaussian
shape of the distributions in the decision variable. Despite
the rathernon-Gaussiandistributionsobserved in Fig. 5(b),
d’ is close to dA. Note that the averagereconstructionvalue
over a disk provides anestimateof the amplitudeof the disk.
The relative accuracy of such an estimate is u1/~1. Thus
there is an intimate connection between the detection task
considered here and the task of amplitude estimation.:]ao

The relative accuracy of the two indices of detection is
worth mentioning. The statistical accuracy of results ob-
tained by the Monte Carlo method must alwaysbe consid-
ered becausethese resultsare calculatedby averagingover a
finite number of discrete occurrences called events. Of the
two measuresof detectability presentedabove, d’ hasbetter
statisticalaccuracy, as it is calculatedby usingallthe events
in the two frequency distributions. By the usualmethod of
propagating errors the rms uncertainty in d’ is easily esti-
mated to be approximately

‘=[2+:’’2)21’ (6)

where n is the number of events in each graph, which is
assumedhere to be the samefor both, The only eventsthat
contribute to the ROC curvearethose that lie inthe rangeof
the decision variable that is common to both frequency
graphsthat are to be distinguished. Thus the calculationof
A, and therefore of dA, is based on only a fraction of the n
events. The rms uncertainty in dA given by Simpson and
Fitterlgis

‘=’4T[A(1~A)Y’2(7)

The accuracy of dAis only slightly worse than that of d’ for
small d’. But as d’ grows, the accuracy of dA soon becomes
much worse because the number of events in the region
common to both frequency distributionsdiminisheseventu-
ally to zero, as the frequency distributions ultimately be-
come completely disjoint. Even though it is not so accurate
asd’, dA is the relevantmeasurefor the simple binarydetec-
tion task, also known as the signal-known-exactlydetection
task. Clearlyfor this taskthe only rangeoft for whichthere
isany confusion in detection isthe regioncommon to the two
frequency distributions. What happensoutside that region
is unimportant for this particulartask.

The above estimatesare those of therms deviationin the
results that would be observed for many repeated realiza-
tions of the sameimagingsituation. However,they may not
properly gaugethe significanceof the changeindetectability
index that might be observed whentwo different algorithms
arecompared on the basisofexactlythe samedatasets. It is
observed that a high degree of correlation often exists be-
tween the reconstructions obtained with different algo-
rithms when one starts from exactly the same data. This
correlation is advantageousbecause it increasesthe signifi-
cance of an intercomparison made between two algorithms
for a given number of trials. However, the significance of
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Fig.7. ReconstructionsofFig.3from100noisyparallelprojectionssubtending180degobtainedwith10iterationsoftheARTal~orithmwith
(right)andwithout(left)thenonnegativityconstraint.TheaddednoiseisGa~ssiandistributedwitharmsdeviationof8. “

the difference may be determinedonly by a detailed statisti-
calanalysisof the data as,for example,provided by the ROC
analysiscode CORROC developed by Metzzl or by the tech-
nique suggestedby Hanley and McNeil.~~

Figure 7 shows the reconstructions obtained for an essen-
tially complete set of data, 100projections covering 180deg
but with noise added to the projection data. Therms value
of the noise is 8. For comparison, the peak projection value
of a low-contrast disk is 0.80. Again it appears that the
nonnegativityconstraint produces a visible improvementin
the reconstructions by almost completely eliminating the
noise in the background. However, a disk-by-disk visual
comparison between the constrainedreconstructionand the
known original scene (Fig. 3) indicates that the ability to
detect each disk is questionable. There is clearly a need to
accumulate statistics on many objects and scenes to deter-
mine whether the constraint has improved detectability.
The frequency graphsinFig. 8 provide the desiredstatistical
summary. For the unconstrained reconstructions, the fre-
quency graphs for both regions appear to be Gaussian
shaped with essentially identical rms widths, as expected,
since the unconstrained reconstruction algorithm is a sta-
tionary linearprocess. The characteristicsof the frequency
graphsin Fig. 8 are much the sameasthose discussedabove.
The detectability index d’ obtained from the frequency
graphs for the unconstrained reconstructions is 1.995,and
d.4derived from the corresponding ROC curve is 1.964. The
detectability in this situation can be calculated on the basis

. of the rms noisein the projection dataunder the assumption
that the background is known.s The resultingd’ is approxi-
mately 2,3. This is slightly larger than the value obtained
above, which one expects because no account is taken of the
correlations intrinsic to noise in computed tomographic re-
constructions.16 Thus, in this case of complete and noisy
data, the ART algorithmachievesnearlyfull statisticaleffi-
ciency, as is expected of the filtered backprojection algo-
rithm.zs

(a) 20

15 I

5

0
-0.2 -0.1 0.0 0.1 0.2 0.3

DECISION VARIABLE

‘b) ‘o~

I
60

g

w
3 40
0
u
M
u

20 ,: !,
,.: ,,.,

.,,, :,.,., .: ,. . ‘, Nor PRESENT
,, ‘.., PRESENT

.,...,
0 $ , , ..

-0.2 -0.1 0,0 0.1 0,2 0.3

DECISION VARIABLE

Fig.8. Frequencygraphsof thedecisionvariable(theaverageover
a circularregion)evaluatedwherea low-contrastdiskis knownto
exist(dashedcurve) and where none exists (solid curve) for ART
reconstructions (a) without the nonnegativity constraint and (b)
with the constraint. These results summarize the performance
obtained from reconstructions of 10 randomly generated scenes
from 100viewswith an rms noise value of 8.
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tainty in dAisapproximately0.206. The difference between
these two indices of detectability is almost statisticallysig-
nificant.

Summarizingthe above discussion, the d~ valuesfor the
ROC curves are 1.964and 1.985,without and with the con-
straint, respectively, each with an estimated statisticalun-
certainty of 0.206. Thus we might conclude that the non-
negativityconstraint increasesthe detectability by no more
than 25~0,based on a 1.65 standard-deviation limit for a
confidence level of 570. However we expect the statistical
accuracy in the comparison between these two valuesto be
much better than this because of the strong correlation be-
tween the unconstrained and the constrained reconstruc-
tions mentioned above. It is found that the frequency
graphsof the differences of the decisionvariablesfor the two
reconstruction sets, taken regionby region,haverms widths
that are almost half those for the individual frequency
graphs. One concludes that the nonnegativity constraint
does not increase the detectability by more than approxi-
mately 13~0. This conclusion isperhapscontraryto whatwe
might be led to believe on the basis of the improved visual
appearanceof Fig. 7(b). As this resultis counterintuitive,it
deservescloser investigationin future research.

Table 1tabulatesthe detectability indices obtainedunder
various data-taking conditions. The estimated accuracies
of dAtake into account the fact that the numberof eventsin
the frequency graphsare 100and nearly300. The nonnega-
tivity constraint is seen to be generally useful. The con-
straint is particularly helpful when the data are limited by
deficiencies in the measurementgeometry. It has little ef-
fect when the data are complete but noisy. The CPU time
requiredto calculatethe entriesin the table look aslong as 1
h on a VAX 8700, which is about four times faster than a
VAX 785.

Table 2 summarizesother results obtained for the same
conditions. As noted above, d’ hasbetter statisticalaccura-
cy than dA,rangingfrom 0.114to 0.196for the entriesin the
table, assuming 100 and 300 events in the two frequency
graphs. The rms error is the rms difference betweenthe 10
reconstructions and their corresponding original images.

1.0

0.8

0.6

0.4

0.2

...
.,’

UNCONSTRAINED

CONSTRAINED

0.0 I I
0.0 0.2 0,4 0.6 0.8 1.0

FALSE-POSITIVE PROBABILITY

Fig.9. The ROC curvesderivedfrom the frequencygraphsthatare
shown in Fig. 8 for unconstrained ART (solid curve) and for con-
strained reconstructions (dashed curve). The nonnegativity con-
straint does not alter detectability in a statisticallysignificant way.

The nonnegativityconstrainthas a profound effect on the
frequency graphs in Fig. 8. Negativevaluesfor the decision
variable are not possible, so the frequency graph for the
background regionbecomes spikedat zero. The meanvalue
of the decision variable of the frequency graph for the low-
contrast disk regions is reduced by almost a factor of 2.
However,the ROC curves (Fig. 9) for the unconstrainedand
constrained cases are essentially identical, indicating that
there is no change in discrimination between the back-
ground and the low-contrast disks. The implication is that,
under an appropriate transformation of the decision vari-
able, the two frequency graphsare essentiallyunchangedin
their region of commonality, despite the obvious changesin
gross graph shapes. From the frequency graphsof the con-
strainedreconstructions, d’ is 1.825and dA derived from the
area under the ROC curve is 1.985. The statistical uncer-
tainty in these values for d’ is approximately 0.141 by the
more general form of Eq. (6) for an unequal number of
eventsinthe two frequency graphs,andthe statisticaluncer-

Table 1. Summaryof the Effect of the NonnegativityConstraintonthe DetectabilityIndex dADeterminedfrom
the Area underthe ROC Curvefor VariousKindsof ProjectionData”

d~
Relative

No. RMS Without With Improvement
Projections (;:g) Noise Constraint Constraint in dA

100
100

180
180

8
4

1.964 + 0.205
4.113 + 0.826

1.985 + 0.206
4.514 + 1.223

+170
+1070

8
12
16

180
180
180

0
0
0

0.458 + 0.145
0.901 + 0.153
1.937 + 0.202

0.732+ 0.149
2.092+ 0.215
5.322 + 3.02

+60%
+132%
+175y0

1.176+ 0.161
1.244+ 0.164

2.319 + 0.238
3.329 + 0.434

+97%
+168%

16
32

90
90

0
0

16
16
16

180
180
90

2
1
1

1.626+ 0.182
1.845+ 0.199
1.265+ 0.163

2.616+ 0.279
3.965+ 0.722
2.165+ 0.221

+16Y0
+11590
+7190

“ Theseresultswereobtainedfromtestsmadeontbecomputedtomographicreconstructionsof 10randomlygeneratedscenesfor ~ariouskindsufdeficiencyin
the data. In all cases 10 iterationsof the ART algurithmwereused with nominalrelaxationfactors, as explainedin the text.
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Table 2. Summaryof the Effect of the NonnegativityConstrainton OtherMeasuresof ReconstructionQualityfor
the SameSituationsTabulatedin Table 1

d’ RMS Error L1 Error RMS Residual
A8 RMS Without With Without With Without With Without With

Projections (Deg) Noise Constraint Constraint Constraint Constraint Constraint Constraint Constraint Constraint
No.

100 180 8
100 180 4

1.995
4.001

1.825
4.032

0.101
0.069

0.063
0.056

0.068
0.040

0.020
0.017

3.55
1.79

3.86
1.94

8 180 0
12 180 0
16 180 0

0.464
0.871
1.960

0.653
2.054
4.782

0.125
0.109
0.092

0.095
0.074
0.061

0.068
0.063
0.053

0.033
0.024
0.018

0.064
0.067
0.071

0.763
0.553
0.362

16 90 0
32 90 0

1.122
1.184

2.050
3.227

0.116
0.112

0.093 0.057
0.055

0.029
0.025

0.188
0.161

0.466
0.3310.082

16 180 2
16 180 1
16 90 1

1.653
1.860
1.105

2.372
3.698
1.795

0.098
0.093
0.117

0.065 0.059
0.055
0.055

0.020
0.019
0.030

0.503
0.259
0.351

0.876
0.537
0.619

0.062
0.094

The L1 error is similarbut is calculated asthe averageof the
absolute value of the differences. It is concluded from this
table that the nonnegativityconstraintenhancesdetectabil-
ity when the data are incomplete. An equally fundamental
result is that the detectability for complete, but noisy, data
is not improved by the nonnegativityconstraint. An oppo-
site conclusion would be drawn from the rms and the L1
norm errors, both of which indicate that the constrained
reconstructions are significantly closer to the original im-
ages. These measuresprobably fail to be indicative of task
performance because the fluctuations in the constrainedre-
constructions are no longer position invariant,that is, sta-
tionary. Another reason to distrust such summary mea-
sures of reconstruction fidelity is that they do not distin-
guish between different spatial frequencies. As such they
cannot be indicative of the performance of specific tasks,:]

It is noted that d’ is not much different from d~ in most of
the situations tested, even though the frequency distribu-
tions for the constrained reconstructions never possess
Gaussianshapes. This is encouragingbecaused’ has better
statistical accuracy than dA,particularly for large d’, and is
more likely to be a continuous function of the parameters
that can be varied in the reconstruction procedure. Thus d’
is a desirable performance index for the purpose of optimiz-
ing a reconstruction technique, if one bears in mind the
caveats,stated above, concerning the connection betweend’
and dA. If dA is deemed the appropriate performance index,
good relative accuracy in its estimation can be easily ob-
tained only when it falls in the range from approximately 1
to 3. Thus the design of the imaging situation must be
carefully adjusted to keep dA within that range. Although
the relative accuracy of d’ keeps getting better as d’ gets

larger, at some point its relevance might be questioned,
becausediscrimination becomes virtuallycertain. Further-
more, systematiceffects of the simulationprocedure become
more relevantas the statisticalerrors decrease.

of the reconstructed image. The goal of the simulationis to
estimate the accuracy with which a specified task can be
performed on the basisof the reconstructions. This method
accords with the notion that an algorithm can be properly
evaluatedonly by trying it out on a statisticallymeaningful
sample of trials. A major benefit of the Monte Carlo tech-
nique is that new effects maybe easilyadded. On the other
hand,only the overalleffect of allthe conditions is observed.
It maybe difficult to determinethe relativecontributionsof
individual effects. The Monte Carlo simulationtechnique
is particularly useful in situations that do not lend them-
selvesto an analyticapproach. It can provide a good statis-
tical sampling over all the uncontrollable variables in the
problem. An example is the typical case of the effect of
discrete samplingon signalanalysis,as in the problem of the
detection of smallobjects. In this exampleit is desirableto
average the detectability over all possible positions of the
object relativeto the discrete measurementsand the recon-
struction grid.4 The Monte Carlomethod isperfect for this.

We have seen that the nonnegativity constraint is often
beneficial for the specific problem addressed here—detec-
tion of low-contrast disks in computed tomographic recon-
structions. This constraint is particularlyhelpful whenthe
data consist of a limited number of noiseless projections.
However,whenthe data arecomplete but degradedby addi-
tive noise, the nonnegativity constraint does not improve
detectability. Some improvement is attainedin intermedi-
ate circumstances when the data are both incomplete and
noisy. Onecan abstracttheseresultsbyconcluding thatthe
useof prior knowledge(that the imagemustbe nonnegative)
improves the usefulnessof reconstructions containing arti-
facts created by the null space associated with a lack of
measurements.z On the other hand, whenthe defects in the
reconstruction are a consequence of noise in the measure-
ments, the nonnegativity constraint is of no help. We hy-
pothesizethat the valueof the nonnegativityconstraintwill
generally depend on which of these characterizesthe defi-
ciency in the data. In previous research,we found that the
effectiveness of the nonnegativityconstraint can be signifi-
cantly enhanced by choosing the relaxationparametersused
in the ART algorithmto optimize the detectability.15

It is possible to obtain misleadingresultsby assumingtoo
simple a task. For example,by considerationof the binary–

DISCUSSION

We have presented a method to test the effectiveness of
reconstructionalgorithms. This method is based on a Mon-
te Carlosimulationof the complete imagingprocess from the
composition of the original scene to the final interpretation
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singletdiscrimination(Rayleigh) taskapplied directly to the
acquired quantum-limited data, Wagner et al.24came to the
puzzling conclusion that a large square aperture is prefera-
ble to a coded aperture. A subsequentstudyzscorroborated
and extended the originalanalysis. The rub is the simulta-
neousassumptionof only a singleobject, whichcan havejust
two configurations, and a known background. Under these
assumptions,binarydiscriminationcan logicallybe made by
comparing the raw data against the two alternative signal
shapes. This taskcan be performed withoutthe necessityof
reconstructingthe scene. It hasbeen shown2Gthat the pres-
ence of an unknown, slowly varying background reduces
both the detectability and the Rayleigh discriminabilityfor
large apertures substantially more than for apertures that
are approximately the size of the object. The smalleraper-
ture is preferred because it reduces the mixture of unknown
background with the signal. The latter analysis was also
performed solely on the basisof the measurementdata. It is
conjectured that coded apertureswill prove to provide bet-
ter performance than the simple square aperture as more
variabilityand corresponding uncertaintyis introduced into
the problem. Examples of such increased complexity for
the Rayleigh task are unknown position and orientation of
the binaryobject and the presence of other unknownobjects
in the scene. With the Monte Carlo evaluationmethod, one
can easily accommodate such additional complications by
numerically estimating task performance in many recon-
structed images. It is anticipated that the presence of arti-
facts in the reconstructions will reveal a major hole in the
“grand gaping aperture” argument.25

From the above we see that a fundamental distinction
existi between performing binary discrimination tasks on
the basis of directly measured data as opposed to using
reconstructed images. An analysis based on the raw data
amounti to acalculationof the propagationof random errors
for the particular measurement matrix. This analysis
places an upper limit on the accuracy of binary discrimina-
tion. This upper limit can be attainedin situationsin which
a complete set of data is available,for which the nasty null
space and, hence, artifacts in the reconstructions are elimi-
nated. Logically speaking, it is also applicable in the rare
situationsin which the signaland the background are com-
pletely known a priori, as assumed in the above-mentioned
studies. In cases involving noiselessdata, such an analysis
always implies perfect discriminability. In the present
study we have observed the contrary; detectability based on
reconstructions from noiselessdata can be far from perfect
because of the artifacts produced by the (unknown) collec-
tion of objects in the scene in conjunction with a limited
number of projections. The appearanceof these artifacts is
equivalentto the lack of knowledgeof the background in the
projection data for such a problem. Although the recon-
struction procedure is supposed to separate the objects in
the reconstructed scene, it can do so only if enough projec-
tion data are available.

As the detection task specified in the present example is
trulysimpleand not closely relatedto manyrealproblems, it
would be worthwhileto explore more complex and interest-
ing tasks.2027,28Clearly, the definition of the task and the
method used to perform it are extremely important for a
reliable conclusion. But it may be difficult to define pre-
cisely many interesting real-life tasks. For example, how

does one approach the problem of detection of a lesion in a
radiograph? Another aspect of real imagingsystemsis that
they almost invariablymust handle multiple types of tasks
in many types of images. The solution in terms of the
Monte Carlo method is to invoke a performance index that
takes a weighted average over as many different types of
tasksand imagesas necessaryto produce a relevantmeasure
of efficacy.

The use of a nonnegativity constraint leads to a bias in
reconstructed images. Thus there is probably a need to
acknowledge a lack of information about the background
surrounding an object. Inclusion of an unknown back-
ground leads to a weightingfunction composed of a positive
central region surroundedby a negativeannulus,a so-called
center--surroundmask. An alternative way to handle an
unknown background is to employ a more general, least-
squaresfitting approach in which the reconstructed image
dataarefitted to an assumedobject signalplusa constantor
slowly varying background.zs The fitting approach can be
usedto estimatemany other object parameters,for example,
its position.zo

A worthwhileextension of the present researchwould be
to pursue alternativechoices for the decision variablesfor
the purpose of improving performance. For example, one
might consider a weighted average of the reconstruction
values over a local region, much the same as the simple
circular weight function used here but with considerably
more flexibility. The optimal weightsmight be determined
by usinghalf the simulatedreconstructionsas a trainingset
and the second half to estimatethe task performance index.
It would probably be too difficult to handlecompletely gen-
eral weight assignments,but, with suitable restrictions on
the number of variablesused to specify the weights,it might
be feasible. The optimal choice of decision variablemight
depend on the reconstruction procedure. If this line of
research were pursued, it would be reasonableto compare
the performance of one algorithm against another only on
the basis of the best-decision procedure that could be
achieved with each. If a human observer is to be the final
interpreter of the images, the method used to perform the
visual task must be correctly modeled to mimic the human
observer,which might not be so easy to accomplish numeri-
cally.z~ It is interesting to note that the human observer
probably cannot take into account a knownbackgroundval-
ue in an absoluteway. Thus it does not makesenseto build
this prior knowledge into the task. In principle, it is of
coursefeasibleto incorporatea humanobserverdirectly into
the present method, that is, to entreat a human interpreter
to make the required decision on the basis of a sequence of
reconstructed imagesthat have been generatedby the com-
puter. However, it should be realizedthat reliable results
can be achievedonly through carefulpreparationand pains-
taking training of the observers.29-31The latter aspect of
dealing with human observers must be taken seriously be-
cause artifacts keep changing character as the algorithm
changes.

Clearly, this approach of random simulation is generally
applicable to testingand evaluatingany or all aspectsof the
entire imaging chain from scene generation to the final
method of task performance. Possibly a fruitful line of
researchthat can be addressedby usingthis approach is the
optimization of the imaging system, either in terms of its
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individualpartsor in itsentirety. If manyparametersareto
be varied in the optimization, one must be concerned about
the stability of the optimization procedure. Regularization
may be required in order to stabilize the search for the
optimum. For example, the optimization function could be
augmented by a sum of squares of the deviations of the
parametersfrom some standardvalues.
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